Plastic Hatching Timing by Red-Eyed Treefrog Embryos Interacts with Larval Predator Identity and Sublethal Predation to Affect Prey Morphology but Not Performance
نویسندگان
چکیده
Many animals respond to predation risk by altering their morphology, behavior, or life-history. We know a great deal about the cues prey respond to and the changes to prey that can be induced by predation risk, but less is known about how plastic responses to predators may be affected by separate plastic responses occurring earlier in life, particularly during the embryonic period. Embryos of a broad array of taxa can respond to egg- or larval-stage risks by altering hatching timing, which may alter the way organisms respond to future predators. Using the red-eyed treefrog (Agalychnis callidryas), a model for understanding the effects of plasticity across life-stages, we assessed how the combined effects of induced variation in the timing of embryo hatching and variation in the larval predator community impacted tadpole morphology, pigmentation and swimming performance. We found that A. callidryas tadpoles developed deeper tail muscles and fins and darker pigmentation in response to fish predators, either when alone or in diverse community with other predators. Tadpoles altered morphology much less so to dragonfly naiads or water bugs. Interestingly, morphological responses to predators were also affected by induced differences in hatching age, with early and late-hatched tadpoles exhibiting different allometric relationships between tail height and body length in different predator environments. Beyond induced morphological changes, fish predators often damaged tadpoles' tails without killing them (i.e., sublethal predation), but these tadpoles swam equally quickly to those with fully intact tails. This was due to the fact that tadpoles with more damaged tails increased tail beats to achieve equal swimming speed. This study demonstrates that plastic phenotypic responses to predation risk can be influenced by a complex combination of responses to both the embryo and larval environments, but also that prey performance can be highly resilient to sublethal predation.
منابع مشابه
"How do Embryos Assess Risk? Vibrational Cues in Predator-Induced Hatching of Red-Eyed Treefrogs" (2005), by Karen Warkentin
In ?How do Embryos Assess Risk? Vibrational Cues in Predator-Induced Hatching of RedEyed Treefrogs? (2005), Karen Warkentin reported on experiments she conducted to see how red-eyed treefrog embryos, Agalychnis callidryas [5], can distinguish between vibrations due to predator attacks and other environmental occurrences, such as storms. Though the ability of red-eyed treefrogs to alter their ha...
متن کاملWasp predation and wasp-induced hatching of red-eyed treefrog eggs.
Eggs often suffer high levels of predation and, compared with older animals, embryos have few options available for antipredator defence. None the less, hatchlings can escape from many predators to which eggs are vulnerable. I studied early hatching as an antipredator defence of red-eyed treefrog embryos, Agalychnis callidryas, in response to egg predation by social wasps (Polybia rejecta). Red...
متن کاملFlexible information sampling in vibrational assessment of predation risk by red-eyed treefrog embryos.
Prey assessing risk may miss cues and fail to defend themselves, or respond unnecessarily to false alarms. Error rates can be ameliorated with more information, but sampling predator cues entails risk. Red-eyed treefrogs have arboreal eggs and aquatic tadpoles. The embryos use vibrations in snake attacks to cue behaviorally mediated premature hatching, and escape, but vibrations from benign sou...
متن کاملRisk-induced hatching timing shows low heritability and evolves independently of spontaneous hatching in red-eyed treefrogs.
Plasticity in the timing of transitions between stages of complex life cycles allows organisms to adjust their growth and development to local environmental conditions. Genetic variation in such plasticity is common, but the evolution of context-dependent transition timing may be constrained by information reliability, lag-time and developmental constraints. We studied the genetic architecture ...
متن کاملEgg-killing Fungus Induces Early Hatching of Red-eyed Treefrog Eggs
Pathogens can cause substantial mortality of amphibian eggs. If the timing of hatching is phenotypically plastic, embryos could escape from otherwise lethal infections by hatching early. We tested this with the arboreal eggs of red-eyed treefrogs, Agalychnis callidryas. A filamentous ascomycete (Dothideales: Phaeosphaeriaceae) was present on ;7% of egg clutches collected from a pond in the rain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014